

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T760(**E**)(N15)T

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N2

(8080602)

15 November 2017 (X-Paper) 09:00–12:00

This question paper consists of 7 pages and a formula sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

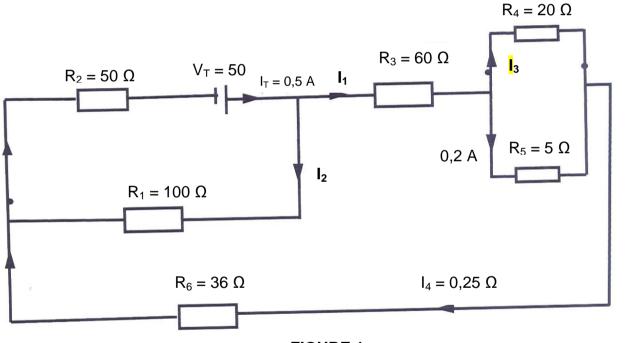
-2-

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. ALL sketches and diagrams must be drawn with a pencil.
- 5. ALL final answers must be rounded off to THREE decimal places.
- 6. Write neatly and legibly.

Choose an item from COLUMN B that matches a description in COLUMN A. Write only the letter (A-N) next to the question number (1.1-1.10) in the ANSWER BOOK.


	COLUMN A		COLUMN B		
1.1	A process which will generate a hole in the crystal lattice structure	A	amplitude		
1.2	N-type material is a majority carrier of	В	extrinsic material		
1.3	A device which converts one form of energy to	С	element		
	another	D	electrons		
1.4	The silicon atom has four electrons in the	E	donor doping		
1.5	A material that consists of only one type of atom	F	transducer		
1.6	The source of charge carriers in the transistor	G	acceptor doping		
1.7	The height of the waveform	Н	m-shell		
1.8	When the base-emitter junction is forward biased and the base-collector junction is reverse	Ι	emitter		
	biased	J	saturation		
1.9	A minus sign is used to indicate this in decibels	K	base		
1.10	The semiconductor material formed as a result of doping	L	negative		
	or doping	М	N-shell		
	· · · · · · · · · · · · · · · · · · ·	Ν	linear region		

[10]

- 2.1 State the relationship between current, voltage, resistance and temperature according to Ohm's law.
- 2.2 Referring to the circuit diagram in FIGURE 1 below, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$, $R_3 = 60 \Omega$, $R_4 = 20 \Omega$, $R_5 = 5 \Omega$, $R_6 = 36 \Omega$, $I_T = 0.5 A$, $I_{R5} = 0.2 A$, $I_4 = 0.25 A$, and $V_T = 50 V$.

Determine the following:

- 2.2.1 The total resistance of the circuit (R)
- 2.2.2 The current I₃
- 2.2.3 The voltage drop across R₆

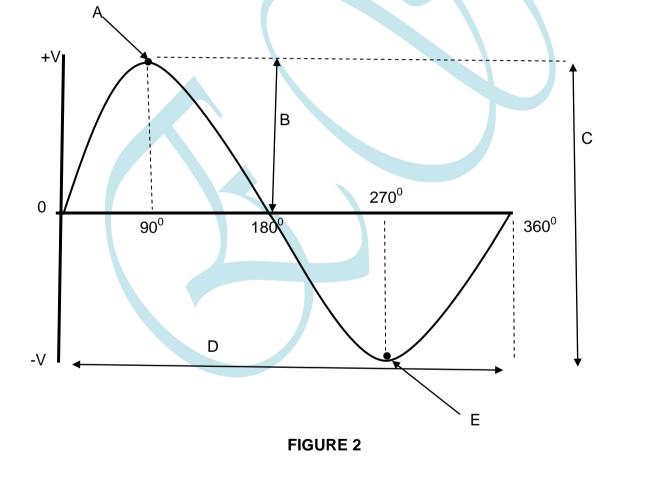
2.3 State Kirchhoff's first law.

(2) **[15]**

(5)

(3)

(2)


(3)

3.1 A series circuit consists of a 10 Ω resistance, a 10 μ F capacitance and a 30 mH inductance connected across a 100 V alternating supply.

Determine the following:

3.1.1	The frequency at which the circ	uit will resonate	(4)
3.1.2	The current at resonance		(3)

- 3.1.3 The voltage drop across each component (6)
- 3.2 Label the parts of the sinewave marked A–E in FIGURE 2 below. Write only the answer next to the letter (A–E) in the ANSWER BOOK.

(5) [**18**]

4.1	Give TWO breakdown mechanisms that can occur if the reserve bias work of a PN junction is greatly increased.	oltage (2 × 2)	(4)		
4.2	Explain the term dark current.		(2)		
4.3	Draw the circuit symbol of a photodiode		(2)		
4.4	Draw a half-wave rectifier circuit with a smoothing capacitor filter, and the output wave before and after the capacitor.	I show	(6) [14]		
QUEST	ION 5				
5.1	Name the THREE ways a transistor can be connected as an amplific circuit.	er in a	(3)		
5.2	Give FIVE characteristics of a common-base amplifier.		(5)		
5.3	Draw a labelled common-base amplifier circuit using a PNP transistor clearly indicate the input and the output.	or, and	(5)		
5.4	A moving-coil meter has a full-scale deflection of 10 mA and an irresistance of 100 Ω . Calculate the value of a multiplier resistor that would enable the measure a voltage of 10 V.		(5) [18]		
QUESTION 6					
6.1	What is a <i>decibel</i> ?		(1)		
6.2	A 100 mV input to an amplifier produces a current of 1,5 A in a loudsp with an 8 Ω impedance.	beaker			
	Calculate the gain of this amplifier if it has an input impedance of 300 Ω .		(6)		
6.3	A synchro system can only operate successfully if certain basic require are met.	ements			
	Give FIVE of these basic requirements.	(5 × 2)	(10) [17]		

7.1	Name TWO types of thermistors.	(2)
7.2	A bi-metal strip is a temperature-sensitive device, but instead of generating a voltage it indicates only the change in temperature.	

Explain the operating principle of a bi-metal strip.

(6) **[8]**

TOTAL: 100

INDUSTRIAL ELECTRONICS N2

FORMULA SHEET

Direct-current theory

$$\begin{split} V &= I \cdot R & P = V \cdot I & P = \frac{V^2}{R} \\ P &= I^2 \cdot R & R_T = R_I + R_2 & I_{R_T} = \frac{I}{R_T} + \frac{I}{R_2} + \frac{I}{R_2} \\ R_T &= \frac{R_1 \times R_2}{R_1 + R_2} & I_I = \frac{R_2}{R_I + R_2} \times I_T \\ \end{split}$$

$$\begin{aligned} & \mathsf{Alternating-current theory} \\ t &= \frac{I}{f} & e = E_m Sin \theta & i = I_m Sin \sigma t \\ e &= E_m Sin 2\pi ft & i = I_m Sin \theta & i = I_m Sin \sigma t \\ V_{mn} &= 0.707 V_{max} & I_{max} & 0.707 I_{max} & V_{dyy} = 0.637 V_{max} \\ I_{ave} &= 0.637 I_{max} & Form factor = \frac{rms value}{average value} \\ \end{aligned}$$

$$\begin{aligned} Crest factor &= \frac{maximum value}{rms value} \\ E_{avv} &= \frac{e_1 + e_2 + e_3 + e_4 + e_5 + \dots \cdot e_n}{n} & I_{avv} = \frac{i_1 + i_2 + i_3 + i_4 + i_5 + \dots \cdot i_n}{n} & \omega = 2\pi f \\ R_{mv} &= \frac{e_1 + e_2 + e_3 + e_4 + e_5 + \dots \cdot e_n}{n} & I_{avv} = \sqrt{\frac{i_1^2 + i_2^2 + i_3^2 + i_4^2 + i_5^2 + \dots \cdot i_n^2}{n}} \\ X_L &= 2\pi fL & X_C &= \frac{1}{2\pi qC} & V = I \cdot R \\ V_T &= \sqrt{V_R^2 + V_C^2} & V_T &= \sqrt{V_R^2 + V_L^2} & V_T &= \sqrt{V_R^2 + (V_L - V_C)^2} \\ Z &= \sqrt{R^2 + (X_L - X_C)^2} & Z &= \sqrt{R^2 + X_L^2} & I_A &= \frac{V_T}{R} \\ I_e &= \frac{V_T}{Z} & I_B &= \frac{V_T}{R} & I_L &= \frac{V_T}{X_L} \\ I_e &= \frac{V_T}{X_E} & I_F &= \sqrt{I_R^2 + I_R^2} & I_S &= I_L - I_C \\ V_L &= I \cdot X_L & V_C &= I \cdot X_C & Z &= \frac{V}{I_T} \\ \theta &= \tan^{1} \frac{I_R}{I_R} & \theta &= \cos^{-1} \frac{I_R}{I_T} & \theta &= \cos^{-1} \frac{R}{Z} \end{aligned}$$

Measuring instruments

Transistors

$$I_E = I_C + I_B$$

Decibel ratios

Decibel ratios

$$N = 10 \log \frac{P_{oUT}}{P_{IN}} \qquad N = 20 \log \frac{I_{oUT}}{I_{IN}} + 10 \log \frac{R_{oUT}}{R_{IN}} \qquad N = 20 \log \frac{V_{OUT}}{V_{IN}} + 10 \log \frac{R_{IN}}{R_{OUT}}$$
If $R_{IN} = R_{OUT}$:
 $N = 20 \log \frac{V_{OUT}}{V_{IN}} \qquad N = 20 \log \frac{I_{oUT}}{I_{IN}}$
Resistance
 $R = \frac{\rho\ell}{A} \qquad A = \frac{\pi d}{4}$